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The calculation of atomic polarizabilities, with emphasis 
on the first transition series 

by G. S. CHANDLER and R. GLASS 
Department of Physical and Inorganic Chemistry, 

The University of Western Australia, Nedlands, Western Australia 6009 

The dipole polarizability gives the first-order effect of an electric field on an 
electron cloud. Its calculation depends on the perturbation of the wavefunction by 
the electric field. The application of the variation method to the calculation of 
polarizabilities is discussed. Emphasis is laid on using configuration interaction 
wavefunctions in the calculation of transition-metal atom polarizabilities. 

1. Introduction 
An atom is distorted by an electric field E. A dipole moment arises from this 

distortion and can be expressed as a power series in the field, 

p = p o  +a - E +is: E2 +&y!E3 (1) 

Here po is the permanent dipole moment, a, a second-rank tensor, is the 
polarizability and /I and y are hyperpolarizabilities. For practical purposes the dipole 
moment induced by static laboratory fields is adequately described by the polariza- 
bility a, although hyperpolarizabilities are important in some applications such as 
determining the induced dipole moment in intense laser radiation fields (Miller and 
Bederson 1977) and in the Kerr effect (Buckingham and Pople 1955). Higher-order 
multipole moments are also induced by the field, but will not concern us here. 

As the polarizability is the leading term in evaluating the response of an atomic or 
molecular system it appears in many relations describing the interactions of atoms and 
molecules with charged particles and involving the interaction of radiation with matter. 
Consequently important phenomena such as nucleation, catalysis, solvation and the 
formation of Van der Waal’s molecules are connected with the polarizability. 

2. Calculation of atomic polarizabilities 
The calculation of atomic polarizabilities was reviewed long ago by Dalgarno 

(1962). All approaches basically depend on the determination of the atomic wavefunc- 
tion as perturbed in the field. 

Consider an isolated atom of nuclear charge 2 with N electrons having position 
vectors ri. It is convenient to consider the field as being generated by an external charge 
Z at position r’, with lr’l being large compared to IrJ. The potential energy of the atom 
in this field is 

This may be developed in Cartesian coordinates (Buckingham 1959) but in our case it is 
more straightforward to work in spherical polar coordinates (ri, Bi, 4J. The RHS of (2) 
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294 G. S .  Chandler and R .  Giass 

can be expanded as a sum of Legendre polynomials of order k, Pk( cos 0). After the 
spherically symmetric terms have been dropped this leaves 

Denote the wavefunction of the atom in the field as $(r, r’). Then, following Dalgarno 
(1962), the r’ dependence of the wavefunction can be included in the following way 

provided that the unperturbed state is not degenerate. Normalization of $ is preserved 
to the order of 2’ by choosing $Ik) so that 

(@lk’9 * c J  = 0 ( 5 )  
The quantum-mechanical expression for the polarizability can be developed from the 
first-order wavefunction (4), by substituting it into the expression for the dipole 
moment associated with wavefunction $, 

I >  N 
p =  - $ C r,P,(cos ei) $ ( l i -1  

This substitution yields the following expression for the dipole moment to the order 
of 2’ 

This is an expansion of p in terms of the field strength at the nucleus, E = - Z/r” and 
its derivatives. Writing it this way, the leading term is 

Comparing (8) with (1) it can be seen that 

Thus the polarizability is directly related to the first-order dipole correction to the 
wavefunction, and the calculation of the dipole polarizability resolves into the 
determination of this correction. Each term in (3) can be treated as a separate 
perturbing potential, and for the polarizability (9) only the dipole term is needed. 
Consequently we take 

N 

v, = 1 ri P,( cos ei) (10) 
i =  1 

and the perturbed operator as 

H,+EV1 = H ( E )  (1 1) 

( H ,  + EV,)Y = &* (12) 

where H ,  is the unperturbed Hamiltonian. The corresponding Schrodinger equation is 
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Treating the field strength E as a perturbation parameter, the perturbed wavefunction 
and energy may be expanded as 

(13) 

(14) 

Following the usual development, substitution of (12) and (13) into (11) leads to the 
series of equations 

(1 5 )  

(16) 

(17) 

Y = $o +E$\”+ E’“,’’+. . . 
d = do + Ed\’’ + E’d‘,‘’ + . . . 

(H  - do)$o = 0 

( H  - do)$\l) + (v, - sy))$o = 0 

(H - dO)l@ + (V, - &\1))$\1) - dp$o = 0 

&il) = ($PI v, l$o) 

In the atomic case B‘,‘)=O. Then from (16) 

(18) 

From (9) it can be seen (Dalgarno 1962) that the polarizability of the state I$o) can be 
written in terms of the second-order energy correction, 

a = - 26‘” 2 = -2(rclll~ll$o> (19) 

The above outlines the conventional perturbation approach to polarizabilities. 
However, several recent papers investigate a more general approach (Sadlej 1983) using 
energy derivatives. The development follows from the expansion of the energy d(E) in a 
Taylor series about E = 0. 

S(E)=So+d(T)o+Td dd(E) 1 ’ (F) dZd(E) +... 
0 

Comparison of (20) and (14) shows 

Taking 

&(El = < ~ ( ~ ) I H ( E ) I ~ ( E ) )  (22) 
substituting (13) and (1 1) into the expression and differentiating as in (21) leads to (18) if 
$o and $\I) from (13) obey the Hellmann-Feynman theorem. 

Thus a direct use of (19) may involve errors if the unperturbed wavefunction and its 
first-order correction do not satisfy the Hellmann-Feynman theorem. The difficulty 
may be obviated by calculating second derivatives or using the finite-field approach 
(see later). 

Expression (19) leads to practical methods for calculating polarizabilities, but 
before examining them it is useful to develop another expression for the polarizability. 

Except in special cases (16) cannot be solved exactly. However, it may be solved 
formally using the expansion 
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where 4t is the eigenfunction of the tth excited state of the unperturbed system, and the 
prime on the summation indicates that the term t = 0 is excluded. Then, the second- 
order energy correction is given by, 

and 

Also, since the electric dipole oscillator strength corresponding to the transition 
from the state to the state is defined by 

the polarizability of I$o), is given from (21) and (22) by 

Few determinations of polarizabilibities have been made from (27) or (25) because of 
the contributions from transitions to the continuum. These calculations are referenced 
by Dalgarno (1962) and in the valuable compilation of polarizabilities by Teachout and 
Pack (1971). 

it is preferabie to avoid the compiete summation and to make a direct variationai 
attack on the problem. Because polarizabilities gre directly related to the change in 
energy caused by the perturbation they are subject to a variational principle and can be 
obtained by the usual variation methods. According to Dalgarno (1962), many early 
studies solved 

F=(YIH+EVIY) (28) 
by using a trial wavefunction and minimizing the energy. Recent applications of this 
method using finite fields in (28) (Cohen and Roothaan 1965), with correlated 
wavefunctions (Werner and Meyer 1976, Reinsch and Meyer 1976), have calculated the 
polarizability of the atoms Na through Ca and obtained excellent agreement with the 
existing experimental values. This method appears capable of great accuracy and has 
also been recently applied to molecules (Werner and Meyer 1976, Gready et al. 1977). 
One can proceed differently and instead solve (16) for $\I) and $o by methods similar to 
those used in the Hartree-Fock (HF) method. Proceeding in this way yields the coupled 
Hartree-Fock and uncoupled Hartree-Fock approaches, which have been used in a 
number of atomic polarizability determinations (Teachout and Pack 1971). However, 
the SCF methods can give serious errors in polarizabilities because of neglect of 
correlation effects, as demonstrated by Reinsch and Meyer (1976), Hibbert et al. (1977) 
and Hibbert (1980) for the first and second row of the periodic table. 

Another method of attack which the major portion of this paper is devoted to is 
suggested by the fact that solution of (28) or (16) is equivalent to the simpler problem of 
minimizing the functional 

ay= ( $ \ ~ ) ~ H - ~ o ~ $ ~ ~ ) ) + 2 ( $ \ ~ ) ~ V l ~ $ o )  = -3. (29) 
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provided that I$o) is the exact, unperturbed wavefunction (Slater and Kirkwood 1932, 
Dalgarno and Lewis 1956). Using this variational approach, correlation can be 
included by expressing both the unperturbed and the perturbed states as a super- 
position of configurations 

M 

$o(LS)= 1 aiQi(aiLS) (30) 
i =  1 

where (mi} and (xi} are two sets of single-configuration wavefunctions, and (a,] and 
( f l , }  define the coupling schemes of the angular momenta of the orbitals. This method 
was first introduced by Vo Ky Lan et al. (1976) because of its usefulness in producing 
wavefunctions suitable for application to low-energy electron scattering by atoms. 
Subsequently it has been applied by Hibbert et al. (1977) to first-row atoms and by 
Hibbert (1980) to second-row atoms and ions. We will confine our attention to a 
discussion of its application to the first transition series. 

Because of the nature of the perturbation operator (10) a number of stringent 
restrictions apply to must have the same spin, but opposite 
parity and IL-ElS 1, with L=C=O not allowed. Since application is confined to 
atoms, the radial orbitals making up the configurations mi and xi are constructed from 
one-electron Slater functions 

In relation to 1Cl0, 

with 

4jnl(r) = Nrrjnl exp (- ijnlr) (33) 
where N is the normalizer. 

Then, for a particular choice of radial functions, the expansion coefficients (a,}  in 
(30) and the unperturbed energy do are obtained by diagonalizing the unperturbed 
hamiltonian matrix with a typical element of (@ilHl@j).  The coefficients {hi) in (3 1) are 
determined by substituting (33) into (29), taking the inner product with xi, and solving 
the resulting linear equations 

K 

j =  1 
c ((xiIHoIXj)-Eo6ij)bj= -<xiIvlIyo>=di (34) 

The polarizability is then simply given by 
K 

@ = 2  C bJdj 
j =  1 

(35) 

Ground state HF functions from Clementi and Roetti (1974) are used for the occupied 
Is, 2s, 2p, 3p, 3d and 4s orbitals of the transition metals. The pseudo-orbitals have been 
determined with the following restrictions for the summation in (32), k = n - 1, 

Z , , , = l +  1 

and 
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298 G. S. Chandler and R. Glass 

Thus the coefficients (c jn l )  in (32) are uniquely determined by the orthonormality 
requirements of the {Pnl(r)} .  Consequently the exponents {inl} are the only variable 
quantities and can be determined by minimizing the functional (29), which has the effect 
of optimizing the polarizability c1 for a particular approximate $. 

3. Applications 
The application of the method can be illustrated by a detailed examination of Sc 

which has many of the features common to the transition series but avoids potential 
complications which may arise with a higher occupation of d-orbitals. Recall that use of 
(29) is formally correct only if Ill/o) is the exact unperturbed eigenfunction. Truncation 
is obviously necessary, but it is not clear how far one can go. Hibbert et al. (1977) found 
with first-row atoms that the HF  configuration plus the near degeneracy configuration 
from the s2+p2 excitation gives average polarizabilities Cl within 10% of those from 
more elaborate calculations. Table 1 demonstrates this holds also for Sc and 
presumably for the other early transition elements. In table 1, full CI means all possible 
single and double excitations from the 3d4s2, 3d4p2 configurations for $o, and from 
3d4s4p for The ls22s22p63s23p6 core is kept frozen. Notice that while omitting all 
but the leading two configurations causes only a 1% change, omission of the near- 
degeneracy 3d4p2 configuration results in a 43% rise in the polarizability. 

It should be borne in mind here that an all singles and doubles CI wavefunction 
does not formally satisfy the Hellmann-Feynmann theorem (Nebrant et al. 1979). 
However, Gready et al. (1977) showed, in the case of Li,, that finite-field singles and 
doubles CI  wavefunctions closely obey the Hellmann-Feynmann theorem. 

If the unperturbed state can be satisfactorily represented by an expansion as simple 
as a two-configuration function, then it is possible to speak meaningfully about 
polarizabilities of the electron shells. The conditions that IL-EJS 1 translates in the 
orbital picture into the criterion that most of the polarizability of the shell with angular 
momentum quantum number I is carried by a polarizing orbital with angular 
momentum quantum number 1+ 1. For the transition elements the major part of the 
polarizability comes from the 4s shell. This requires a configuration in $(I), arising from 
a single 4s+4p excitation, i.e. in Sc a 3d4s4p configuration, and this is the leading term 
in each of the allowed 'Po, 'Do and 'F0 states. 

This raises another issue since both the unperturbed and perturbed functions 
contain important configurations which contain 4p-functions. The orbitals best suited 
to each of these jobs, correlation in the unperturbed state and polarizability in the 
perturbed state, are different. The correlating orbitals are more contracted 
( ( r )  = 396 pm in Sc) than the polarizing orbitals ( ( r )  = 738 pm). 

From this it might reasonably be deduced that the 4s-polarizability could only be 
obtained by optimizing separate correlating and polarizing p-functions. In fact a single 

Table 1. Average polarizabilities Cr A3 for Sc, with differing ground state functions.? 
- non-HF orbitals *I3 *\I' CI 

4p 4d 4f Full CI Full CI 23.44 
3d4s2, 3d4p2 Full CI 23.09 

3d4s2 Full CI 33.63 

t From Glass and Chandler (1983). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
0
9
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Calculation of polarizabilit ies: Jirst transition series 299 

Table 2. mp functions and the polarizability of Sc in A3. 

non-HF orbitals $0 $'" 1 c i  

4P, 5 3d4s2, 3d4p' 3d4s4p, 3d4s5p 15.87 
3d4p%, 3d$ 3d24p 

- %? 3d4s2, 3d4p2 3d4sG, 3d2G 15.68 
4P 1 3d4sG, 3d'G 17.59 

t Optimized on 3d4s('D)4p 'Po, 'Do, 'F0 CSFs in $\') (Chandler and Glass 1985). 
3 Optimized on a longer expansion for I,+',') (Glass and Chandler 1983). 

p-orbital which fulfils both requirements can be found. The optimization process 
required is that I,$,, consists of the single 3d4s2 HF-configuration and that I,$\') contains 
only one of the configuration state functions (CSFs) from the possible 3d4s4p couplings 
for each of the allowed symmetries in the perturbed state (Glass and Chandler 1985 a). 
Thus, of the two possible couplings in Sc which lead to a 'Do state, 3d('D)4s('D)4p and 
3d(*D)4~(~D)4p, one must be chosen and we have used the first of them. Table 2 
compares the result from using a single 4p function with that from a 4p correlating 
combined with a polarizing function. The two results are within 1% of each other. 
Note that we distinguish between correlating and polarizing orbitals by putting a bar 
over the latter. Also included in table 2 is the result from a single G-function optimized 
with a larger set of CSFs containing 4p functions in I,$\'). The polarizability is 
appreciably higher because the resulting p-function is over-balanced in favour of its 
polarizing function. Other configurations arising from 3d+4p replacements have not 
been included in I,$\1) because they make only a 1% change in the polarizability 
(Chandler and Glass 1985). 

Interestingly, the polarizability of the 4p orbital itself, although not formally 
occupied in the HI; ground-state configuration, makes the next most important 
contribution to Z, through the 3d4p4d configuration. This adds 5.20w3 or c. 24% to the 
total so that in conjunction with the 3d2G configuration about 28% of the total 
polarizability comes from the 4p shell. 

The 3d shell is not very polarizable and specific optimization of a 4f orbital to 
account for it results in only a 1% increase in polarizability (Glass and Chandler 
1985 b). 

orbital is 
adequate for the remaining elements in the first transition series. That it is, is shown in 
table 3. Zinc stands out as having by far the largest variation with the two approaches. 
In this respect it is more like calcium than its fellow transition elements. 

The superposition of configuration method introduced by Vo Ky Lan et al. (1976) 
for the calculation of polarizabilities appears to be a powerful and, as it leads to short 
configuration expansions, an economic tool for approaching transition-metal polariza- 
bilities. Not all problems have been discussed here, nor have they been solved yet. For 
instance similar problems to those faced with the determination of the non-HF p- 
functions arise for the &functions with the increasing importance of 3d2-+nd2 in 
excitations in the ground state as one goes across the series. Then there is the question 
of inter-shell effects arising from excitations from the 3p shell, which Reinsch and 
Meyer (1976) have shown to be important in K and Ca. Their significance is probably 
less but, nevertheless, still of some importance in the transition elements. Lastly there is 

Quite evidently, it is of some interest to know whether use of a single 
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300 Calculation of polarizabilities: f irst  transition series 

Table 3. Polarizabilities (A3) from a function and from the combination of a 4p and 5 
function. 

Polarizabilities 

with non-HF with noEHF 
Atom G 4P + 5P 

sc  
Ti 
V 

Mn 
Fe 
c o  
Ni 
Zn 

15.68 
13.44 
11.80 
9.53 
853 
7.74 
7.04 
6.74 

15.87 
13.61 
11-95 
9.70 
8.65 
7.75 
7.14 
6.06 

accuracy. We base our belief in the accuracy of this method on the earlier work for the 
first and second-row elements which can be compared with some experiments and on 
the fact that addition of further polarizing functions causes only small changes in the 
polarizabilities. There is very little in the way of experimental work on the first 
transition series. The only measurements, to our knowledge, are for Ni and Cu (Liepack 
and Drechsler 1956) and these probably have large errors associated with them (Miller 
and Bederson 1977). There is a need for accurate experiments for this group of elements. 
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